Caffeine Content of Bondowoso Arabica Ground Coffee with Variation of Roasting Profile and Type of Packages

Dyah Ayu Savitri1), Ayu Puspita Arum1), Hasbi Mubarak Suud1), Oria Alit Farisi1), Susan Barbara Patricia SM1), Bambang Kusmanadhi1), and Denna Eriani Munandar2)

1)Department of Agricultural Science, Faculty of Agriculture, University of Jember, Jl. Kalimantan, Jember, Indonesia
2)Department of Agronomy, Faculty of Agriculture, University of Jember, Jl. Kalimantan, Jember, Indonesia

*) Corresponding author: dyahayusavitri@unej.ac.id
Received: 12 July 2022 / Accepted: 25 July 2022

Abstract

Bondowoso Arabica coffee is a type of coffee that grows on the slopes of Mount Ijen-Raung. It has a high commercial value and distinctive taste. Coffee processing applications from roasting, grinding, packaging and brewing to storage will affect the quality of coffee. Caffeine is one of the compounds in coffee that contributes to bitterness and has certain pharmacological effects. This study aimed to determine the caffeine content of Bondowoso Arabica coffee harvested on August 2021 which was obtained from Sukosari Lor village with various roast profiles and types of packaging. In this study, Arabica coffee was roasted with light roast, medium roast and dark roast profiles. Then each treatment was mashed to obtain ground coffee. Ground coffee was put in a standing pouch made of polyethylene terephthalate (PET) with a thickness of 75 microns; polypropylene (PP) with a thickness of 100 microns; and polypropylene (PP) with a thickness of 120 microns and then stored for three months. During the storage of first and third months, caffeine levels were measured. Based on the results of the study, the caffeine content was increase along with higher roasting temperature. During the storage process, the caffeine content in ground coffee packaged using PP decreased the most.

Keywords: caffeine, coffee, packaging, storage

INTRODUCTION

Coffee is a commodity that plays an important role globally (Wibowo et al., 2021). Arabica coffee (Coffea arabica L.) is a type of coffee that has high commercial value and has a more favorable taste than Robusta coffee (Dias & Benassi, 2015; Randriani et al., 2018). Arabica coffee plantations in the highlands produce the best tasting coffee (Randriani et al., 2018).

Arabica coffee in Bondowoso Regency, East Java, Indonesia, generally grows on the slopes of Mount Ijen-Raung, so the coffee is called as Java Ijen-Raung Arabica Coffee (Wibowo et al., 2021). Java Ijen-Raung coffee has a good development prospects, one of which is through processing into ground coffee (Ardila et al., 2019; Cristanto et al., 2018; Suradi et al., 2017).

Types of coffee roast profiles are generally classified visually by the color of the coffee beans formed as a result of the roasting process at a certain temperature and time (Anisa et al., 2017; Bicho et al., 2012; Fadri et al., 2019; Ivorra et al., 2020; Saloko et al., 2019). The color classification includes green bean, early yellow, brown, first crack done, very light,
light, medium, and dark. Roasted coffee has several levels of color. Furthermore, the degree of roasting of coffee based on the popping sound when roasted is categorized into light (beginning of first crack), medium (peak of first crack), medium-dark (beginning of second crack), dark roast (end of second crack) (Tarigan et al., 2022).

Coffee processing starting from roasting, grinding, packaging and brewing methods will affect the quality of coffee. During this stage, changes in coffee quality can occur which result in loss of aroma and freshness of flavor. This phenomenon is referred to as staling, namely the presence of a sweet but unpleasant taste and aroma due to the loss of various volatile compounds. Lipid degradation due to lipolysis and lipid oxidation also contributes to the decline in coffee quality (Andayani & Agustini, 2019).

Roasting is reported to affect the physical and chemical properties of coffee. Factors that have an important effect on coffee roasting are roasting time and temperature where these two factors will directly affect the water content, carbohydrates, protein, and levels of phenolic compounds which then have an impact on consumer acceptance (Mehaya & Mohammad, 2020; Wang, 2012).

During storage, there can be a transformation of the chemical content of coffee that is triggered by the roasting process and the susceptibility of roasted coffee to physical and chemical changes will affect the sensory quality of the brewed coffee. Water (humidity), air (oxygen), light and foreign odors have the greatest influence on coffee quality during storage (Kreuml et al., 2013). Good storage will affect the quality of coffee. The use of storage methods to the right types of packaging materials can prevent quality degradation and minimize damage to coffee due to product storage for a certain period of time (Edowai & Tahoba, 2018; Saolan et al., 2020).

The freshness of ground coffee can be maintained by using the right type of packaging with good oxygen permeability (Tarigan et al., 2021). Several types of packaging materials that are often used are packaging made of aluminum, LDPE (low density polyethylene), PET (polyethylene terephthalate), PVC (polyvinyl chloride), nylon, PS (polystyrene) and PP (polypropylene) (Dharmaputra et al., 2021; Kiyoi, 2010). Some home industry of coffee processing in Bondowoso are common to use plastic package to pack and sell ground coffee in relatively short time. The use of plastic package for home industry is known to be more priceless and practical.

Caffeine is commonly found in human daily intake, since it is also added in food, beverages, and supplements in various form (Dam et al., 2020). Caffeine (1,3,7-trimethylxanthine) is one of the secondary plant metabolite in coffee that contributes to bitterness and has certain stimulating effects on the center of nervous system (Franca et al., 2005; Olechno et al., 2021). Caffeine is a heterocyclic organic compound with xanthine as a purine base, comprised of a pyrimidine ring associated to an imidazole ring. Caffeine is colorless at ambient temperature, odorless, and bitter (Farah & dePaula, 2019). Arabica green bean commonly performed lower caffeine level than Robusta green bean (Caracostea et al., 2021; Fadri et al., 2020; Yu et al., 2021). Various studies reported that caffeine level may change during coffee roasting and coffee storage (Bicho et al., 2011; Motora & Beyene, 2017; Saolan et al., 2020). This study aimed to determine the caffeine content of Bondowoso Arabica coffee with various roast profiles and types of packaging.
MATERIALS AND METHODS

Arabica Coffee Roasting and Grinding

The Arabica green bean used is a specialty commodity of Java Arabica Coffee which was obtained from Sukosari Lor village, Sukosari sub-district, Bondowoso, East Java, Indonesia. The coffee cherries were processed by applying a natural process. The Arabica green beans obtained, were then roasted. Roasting involves a combination of time and temperature that alters the structure and chemical properties of coffee beans by means of pyrolysis process (Fikri et al., 2022). The roasting process is crucial to develop color, flavor, and aroma of coffee (Santoso et al., 2021).

The coffee roasting process is carried out by applying a drum type roaster with a capacity of one kilogram of coffee per batch. The roaster is equipped with an exhaust fan, thermocouple and data logger. The achievement of each roast profile is distinguished by temperature and roasting time. Roasted coffee profiles in this study were categorized into light roast, medium to dark roast and dark roast. After roasting, each Arabica coffee sample was ground using a coffee grinder with a fine particle size (0.59 mm).

Storage of Ground Coffee

Arabica ground coffee was then stored for three months at room temperature. Three months of storage was chosen in order to simulate the home industry treatment for coffee processing, which commonly using plastic packaging for short period of selling. The package of ground Arabica coffee included of three variations of standing pouch ziplock packaging: a. PET material (75 micron), b. PP material (100 micron), and c. PP material (120 micron). Each treatment were replicated three times. During storage, the temperature and humidity of the storage room were measured. The caffeine level were also measured in the first and third months of storage.

Caffeine Level Measurement

Measurement of caffeine content of Arabica coffee with light, medium-dark and dark roast profiles was carried out at the beginning and three months after the storage of Arabica ground coffee. The procedure for measuring the caffeine content of ground coffee is carried out by referring to Indonesian National Standard (SNI) 01-3542-2004, namely the determination of caffeine using the Bailey-Andrew method (BSN, 2004; Government of India, 2005).

The determination of caffeine using the Bailey-Andrew method was carried out by weighing the sample that had been finely ground and passed a 30 mesh sieve as much as 5 g, then put into an Erlenmeyer. Into the Erlenmeyer, 5 g of MgO and 200 mL of distilled water were added. After being covered with cooling back then simmer slowly for 2 hours. After cooling, it is diluted with distilled water in a measuring flask so that the volume is exactly 500 mL, then filtered. 300 mL of filtrate was taken and put into a flask, added 10 mL of H₂SO₄ (1:9), then boiled until the liquid volume remained approximately 100 mL. The liquid is put into a separating funnel. The flask was rinsed with a small amount of sulfuric acid (1:99) and shaken with chloroform. This rinse liquid is put into a separatory funnel. Into the separatory funnel, 5 mL of 1% KOH was added then shaken and left for some time until the liquid separated clearly. The bottom liquid is a solution of caffeine in chloroform, removed and stored in an Erlenmeyer. Into the separatory funnel, 10 mL of chloroform was added, stirred and left until the liquid separated clearly, then the lower liquid was removed and accommodated in the same Erlenmyer as above. This treatment was
repeated once again. The caffeine solution in chloroform is then heated in a water bath so that the residue remains, then dried in an oven at 100°C until a constant weight is obtained which is the weight of crude caffeine.

Calculation:
Caffeine (C₈H₁₀N₄O₂) in sample
= g N x 3,464 x 500/300 (g)

Data Analysis

In order to investigate the effect of various roasting profiles and type of packages on caffeine content of Bondowoso Arabika coffee beans, all the treatments and measurements were performed in triplicates. The data obtained were then presented in Tables and Graphs.

RESULTS AND DISCUSSION

Roasting Conditions

Based on Table 1, it is known that the initial roasting temperature of Arabica coffee with light roast, medium roast and dark roast profiles were 178°C, 180°C, and 182°C, respectively. The final roasting temperature for Arabica coffee with light roast, medium roast and dark roast profiles were 208°C, 215°C, and 223°C, respectively. During roasting, the coffee loses weight, which ranges from 9.8% to 14.3%. The largest weight loss occurred in coffee roasted with a dark roast profile (14.3%), while the smallest weight loss occurred in coffee roasted with a light roast profile (9.8%). This is in line with other studies which reported that coffee roasted at temperatures of 210, 220, 230, 240 and 250°C experienced a weight loss of 8.54%; 11%; 12.74%; 18.12%; and 24.27%, respectively (Cuong et al., 2014). During coffee roasting, heat and mass are transferred simultaneously as in the drying process (Joko et al., 2009). The roasting process causes water loss and volatile compounds that have an impact on the weight loss of the roasted coffee. The longer the roasting process and the higher the roasting temperature, this will have an impact on the higher shrinkage value (Purnamayanti et al., 2017).

Effects of Temperature

Coffee is one of the plantation products that contain caffeine. Caffeine is a type of alkaloid found in coffee beans, tea leaves and cocoa beans (Fajriana & Fajriati, 2018). Changes in caffeine content with differences in roasting temperature are presented in Figure 2. Based on the figure, it is known that along with the increase in roasting temperature, there will be an increase in caffeine content, which was 3.75% at 167°C; 3.88% at 177°C and 3.95% at 188°C. However, the change in caffeine content in each treatment did not appear too large. Caffeine is a stable compound and degrades slightly when roasted. In another study, it was reported that 230°C is the optimum temperature for dark roast coffee to retain several bioactive compounds. Caffeine tends to be stable at this temperature and the degradation process occurs above 230°C (Grzelczyk et al., 2022).

Table 1. Variables observed during the roasting process of Bondowoso Arabica coffee

<table>
<thead>
<tr>
<th>Variables</th>
<th>Light roast</th>
<th>Medium to dark roast</th>
<th>Dark roast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial temperature (°C)</td>
<td>178</td>
<td>180</td>
<td>182</td>
</tr>
<tr>
<td>Final temperature (°C)</td>
<td>208</td>
<td>215</td>
<td>223</td>
</tr>
<tr>
<td>Average temperature (°C)</td>
<td>167</td>
<td>177</td>
<td>188</td>
</tr>
<tr>
<td>Weight loss (%)</td>
<td>9.8</td>
<td>12.5</td>
<td>14.3</td>
</tr>
<tr>
<td>Roasting time (minutes)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Analysis using Differential Scanning Calorimetry (DSC) from another report showed that caffeine releases water during the roasting process and changes to the anhydrous state which is a more thermally stable structure. Further analysis of X-Ray Diffraction (XRD) showed the presence of a crystal structure for the caffeine fraction.

Roasted coffee has both amorphous and crystalline regions. The significant difference in this spectrum is evidence of a change in the distribution of the amorphous to crystalline phase when coffee is subjected to thermal treatment. Caffeine in the α-polymorph form changes to the β-crystal phase at 140°C and remains in this phase until the start of the melting process at 233°C (Grzelczyk et al., 2022).

Caffeine content during storage

Caffeine is a compound that is naturally present in coffee beans along with 60 other plant parts such as tea leaves, cola nuts, cocoa beans etc. It is an alkaloid in nature and its chemical name is 1,3,7-trimethylxanthine (Asmari et al., 2020). The caffeine content of Bondowoso Arabica coffee roasted with light roast, medium roast and dark roast profiles were 3.75, 3.88, and 3.95%, respectively. Based on the results of this analysis, it is known that Bondowoso Arabica coffee with natural processing will have caffeine levels that increase along with the increase in roasting degree. This is in line with the results of another study where roasting treatment was reported to increase caffeine levels in Ilu Abba Bora coffee, Southwest Ethiopia (Motora & Beyene, 2017). Then it was also reported that along with the increase in the degree of roasting, this has an impact on the increasing of caffeine content in Vietnamese Robusta coffee which was roasted with an American Roast to Spanish Roast profile and using a temperature variation of 210-250°C. (Cuong et al., 2014). It was also reported that green coffee roasting caused an increase in caffeine levels in coffee roasted with a light profile (1.96%) and medium (2.03%), but caused a decrease in caffeine levels in coffee with a dark roast profile (1.9%) (Awwad et al., 2021). Although there was another studies that report that roasting actually reduces coffee caffeine levels by up to 30% (Franca...
An increase in temperature can reduce the moisture content in coffee beans, so that it can help release volatile compounds (eg, caffeine) from coffee; because the caffeine content in dark roast coffee was significantly reduced compared to light roast and medium roast coffee after the roasting temperature increased to a higher limit (dark roast) (Awwad et al., 2021).

Furthermore, Arabica ground coffee stored for three months showed a decrease in caffeine content (Figure 2). Coffee stored in PP packaging with a thickness of 120 microns showed a decrease in caffeine content from 3.745% to 3.635% (light roast profiles); from 3.88% to 3.77% (medium roast profiles); and from 3.95% to 3.905% (dark roast profiles). This phenomenon is also supported by another study which showed a decrease in caffeine levels in natural processed green beans stored at 20°C for three months, from 1709 mg 100 g⁻¹ to 1551 mg 100 g⁻¹ and caffeine levels decreased to 990 mg 100 g⁻¹ after 12 months of storage (Zarebska et al., 2022).

Polyethylene terephthalate (PET) is a type of polyester formed by the reaction between dimethyl terephthalate and ethylene glycol. PET has properties as a good barrier against gases, moisture, heat, mineral oil, solvents and acids (Andayani & Agustini, 2019).

Polypropylene (PP) plastic is a type of flexible plastic packaging that has good resistance to water, strong, lightweight, quite good at holding oxygen, transparent, has a price that tends to be cheap, and easily obtained in the market (Lobo et al., 2014). PET is a good type of plastic as an oxygen barrier medium (Kirwan et al., 2011). PP plastic has excellent moisture barrier characteristics (Kumar et al., 2022). In this study, the largest decrease in caffeine levels occurred in ground coffee stored in packaging made of PP with a thickness of 120 microns, while packaging made from PET with a thickness of 75 microns was able to maintain caffeine levels of ground coffee for 3 months of storage. The samples stored using PP interact with oxygen in the air, thus degradation of the

Figure 2. Effect of packing type and roasting type on caffeine content after 3 months of storage

Notes: Types of standing pouch ziplock packaging, including package 1: PET material with a thickness of 75 microns, package 2: PP material with a thickness of 100 micron, and package 3: PP material with a thickness of 120 micron.
volatile components of coffee occurred. PP packaging is not good as an oxygen barrier media so it provides an interaction between volatile coffee compounds and air containing oxygen and resulted in a decrease in caffeine levels. Oxygen is an element that is reported to accelerate the rate of product damage reactions, starting from triggering microbial growth, denaturation of vitamins, damage to pigments, enzymatic browning processes and reduced aroma of packaged products (Hadisoemarto, 2003).

CONCLUSIONS

In this experiment, the Bondowoso Arabica coffee roasted by higher temperature underwent higher weight loss. Roasting coffee using higher temperature resulting a higher caffeine level in Bondowoso Arabica coffee. During the storage process there was a decrease in caffeine content, especially in ground coffee packaged using polypropylene (PP) rather than ground coffee packaged using polyethylene terephthalate (PET).

REFERENCES

Caffeine content of Bondowoso Arabica ground coffee with variation of roasting profile and type of packages

Savitri et al.