

Pelita Perkebunan merupakan jurnal yang melaporkan hasil penelitian Pusat Penelitian Kopi dan Kakao Indonesia dan lembaga-lembaga lain yang tidak hanya terbatas pada komoditas kopi dan kakao saja, tetapi juga komoditas lain yang relevan dengan kopi dan kakao. Komoditas lain tersebut meliputi tanaman petaun, tanaman untuk tumpang sari, serta tanaman pematah anjing.

Since its establishment in 1911, Indonesian Coffee and Cocoa Research Institute (ICCRI), formerly Besoekisch Proefstation, had published its research findings through a journal called Mededeelingen van het Besoekisch Proefstation. Between 1948-1981 the research institute was under the supervision of Bogor Research Institute for Estate Crops, and published its research findings through De Bergcultures which was later changed to Menara Perkebunan.

Since the institute held the national mandate for coffee and cocoa commodities, and due to the rapid increase in the research findings, ICCRI published its first issue of Pelita Perkebunan journal in April 1985.

Pelita Perkebunan is a journal which publishes the research findings not only for coffee and cocoa commodities but also other commodities relevant with coffee and cocoa i.e. shade trees, intercrops, and wind-breakers.
PELITA PERKEBUNAN
Vol. 30 No. 1 April 2014

DAFTAR ISI
Content

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>47</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

- Evaluasi keterusan beberapa klon kakao (*Theobroma cacao* L.) terhadap *Phytophthora palmivora* [Evaluation the resistance of cocoa clones (*Theobroma cacao* L.) to *Phytophthora palmivora*]. Agung Wahyu Susilo dan Indah Anita-Sari ... 1
- Pengaruh polyethylene glycol 6000 dan lama penyimpanan terhadap mutu benih kakao (*Theobroma cacao* L.) [Effect of polyethylene glycol 6000 and storage period on seed quality of cocoa (*Theobroma cacao* L.)]. Asfii Rahayu, Triani Hardiyati, dan Ponendi Hidayat 15
- Pengaruh pakan tepung sari terhadap parasitiasi dan pemangsaan *Cephalonomia stephanoderis* pada *Hypothenemus hampei* (Effect of pollen feed on parasitization and predatism of *Cephalonomia stephanoderis* on *Hypothenemus hampei*). Dwi Suci Rahayu dan Endang Sulistyowati ... 25
- Penurunan cemaran mikroorganisme pada proses pengukusan biji kakao menggunakan kolom pengukus (Reduction of microbe contamination through steaming process to cocoa beans using steaming chamber). Hendy Firmanto ... 55
- Thermal behavior, microstructure, and texture properties of fermented-roasted rambutan seed fat and cocoa butter mixtures (Perilaku suhu, struktur mikro, dan sifat tekstur campuran lemak biji rambutan terfermentasi-terangrai dan lemak kakao). Noor Ariefandie Febrianto, Uthapong Issara, Tajul Aris Yang, and Wan Nadiah Wan Abdullah ... 65
- Mitra Bestari Undangan Pelita Perkebunan Volume 30, Nomor 1, 2014
(Invited reviewers of Pelita Perkebunan Volume 30, Number 1, 2014) 80
Evaluasi Ketahanan Beberapa Klon Kakao (*Theobroma cacao* L.)

Terhadap *Phytophthora palmivora*

Evaluation the Resistance of Cocoa Clones (Theobroma cacao L.) to Phytophthora palmivora

Agung Wahyu Susilo¹ and Indah Anita-Sari²

¹Pusat Penelitian Kopi dan Kakao Indonesia, Jl. PB Sudirman 90, Jember, Indonesia
²Alamat penulis (corresponding author): sosiloiccri@yahoo.com

Naskah diterima (received) 16 November 2013, disetujui (accepted) 04 Maret 2014

Abstrak

Kata kunci: klon kakao, ketahanan, inokulasi busuk, *Phytophthora palmivora*

Abstract

Acceleration on clonal selection of cocoa resistance to pod rot (Phytophthora palmivora) was carried out by early evaluation of the resistance using laboratory test. This research has objective to select the promising clone resistance to P. palmivora for field evaluation. Trials were carried out at the Laboratory of Plant Pathology at the Indonesian Coffee and Cocoa Research Institute using in-vitro inoculation. Isolate of P. palmivora were collected from the infected pods at Jatiroho Estate, Banyuwangi then inoculated to three mature pods of each tested clones. Trials were carried out in two steps to confirm the stability of performance of the resistance.
PENDAHULUAN

Melalui seleksi pada populasi hibrida persilangan DR 2 x Sca 6 dan populasi ICS 60 x Sca 12 diperoleh beberapa klon harapan tahan penyakit busuk buah (Suhendi et al., 2005) yang di antaranya telah dilepas sebagai klon anjuran, yaitu ICCRI 03 (DR 2 x Sca 6) dan ICCRI 04 (ICS 60 x Sca 12).

Dalam upaya mendapatkan klon kakao tahan penyakit VSD dan penyakit busuk buah maka dilakukan seleksi pada populasi F1 hasil persilangan antarklon unggul terpilih sebagaimana tersebut di atas. Seleksi dilakukan pada populasi hibrida yang tertanam di beberapa lokasi percoabaan uji multilokasi di Jawa Timur. Seleksi tahap awal dilakukan berdasarkan penilaian potensi daya hasil, ketahanan penyakit VSD dan penyakit busuk buah, serta vigor tumbuh tanaman di lapangan sehingga terseleksi beberapa genotipe unggul untuk dikembangkan sebagai klon harapan. Seleksi tahap lanjut dilakukan terhadap klon-klon hasil pengembangan genotipe tersebut yang diuji pada kebun Jatiroro (PTPN XII), Banyuwangi. Proses evaluasi ketahanan penyakit busuk buah di lapangan perlu dilakukan selama beberapa periode masa tanaman berbuah untuk mengetahui stabilitas ketahanan tanaman terhadap P. palmivora sehingga memerlukan waktu yang relatif lama. Oleh karena itu secara paralel juga perlu dilakukan deteksi ketahanan P. palmivora secara dini melalui inokulasi buatan di laboratorium untuk mempercepat proses seleksi. Selanjutnya proses evaluasi ketahanan di lapangan akan terarah pada klon-klon yang menunjukkan potensi ketahanan yang baik terhadap P. palmivora. Deteksi dini sifat ketahanan P. palmivora dapat dilakukan melalui inokulasi secara buatan pada daun (Nyassé et al., 1995; Djogoue et al., 2007) atau buah (Nyassé et al., 2007), keduanya terbukti memberikan hasil yang sama (Rubio et al., 2008). Tulisan ini melaporkan hasil evaluasi ketahanan beberapa klon harapan kakao hasil seleksi pada populasi hibrida tersebut terhadap P. palmivora melalui inokulasi buatan guna mendapatkan informasi potensi ketahanan klon-klon tersebut terhadap penyakit busuk buah.
BAHAN DAN METODE

Materi Genetik

Materi percobaan adalah klon-klon kakao hasil seleksi pada populasi hibrida hasil persilangan antarklon terpilih sebagai makanan diperlakukan Susilo & Anita-Sari (2011). Klon-klon materi percobaan tersebut ditanam di Kebun Jatirono (PTPN XII), Banyuwangi. Total terdapat 41 klon yang diuji ketahanannya terhadap P. palmivora berasal dari 17 genotipe berbeda (Tabel 1). Di antara klon yang diuji tersebut terdapat TSH 858 dan Sulawesi 01 sebagai tetua persilangan, serta Sca 6 sebagai kontrol klon tahan. Guna mengetahui stabilitas ketahanan

Tabel 1. Daftar genotipe kakao materi percobaan uji ketahanan P. palmivora

<table>
<thead>
<tr>
<th>No.</th>
<th>Klon/genotipe (Clones/genotypes)</th>
<th>Keterangan (Notes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TSH 858</td>
<td>Klon rekomendasi (recommended clone)</td>
</tr>
<tr>
<td>2</td>
<td>Sulawesi 01</td>
<td>Klon rekomendasi (recommended clone)</td>
</tr>
<tr>
<td>3</td>
<td>Sca 6</td>
<td>Klon tahan (resistant clone)</td>
</tr>
<tr>
<td>4</td>
<td>JAN/1/6/15 (TSH 858 x SCA 13)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>5</td>
<td>JAN/1/7/14 (KEE 2 x NIC 7)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>6</td>
<td>JAN/1/8/14 (KEE 2 x SCA 13)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>7</td>
<td>JAN/1/8/14 (KEE 2 x SCA 13)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>8</td>
<td>JAN/1/8/15 (KEE 2 x SCA 13)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>9</td>
<td>JAN/1/10/3 (Sul 01 x TSH 858)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>10</td>
<td>JAN/1/10/3 (Sca 5 x TSH 858)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>11</td>
<td>JAN/1/10/22 (Sul 01 x TSH 858)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>12</td>
<td>JAN/1/1/9 (TSH 858 x KEE 2)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>13</td>
<td>JAN/1/1/4/13 (TSH 858 x SCA 13)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>14</td>
<td>JAN/1/4/20 (TSH 858 x SCA 13)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>15</td>
<td>JAN/1/6/20 (KEE 2 x Sul 01)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>16</td>
<td>JAN/1/9/20 (Sul 01 x KEE 2)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>17</td>
<td>JAN/1/14/3 (KW 165 x KEE 2)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>18</td>
<td>JAN/1/14/3 (KW 165 x KEE 2)</td>
<td>Seleksi di Jatirono (selected in Jatirono)</td>
</tr>
<tr>
<td>19</td>
<td>KATE/1/1/18 (Sul 01 x TSH 858)</td>
<td>Seleksi di Kaltelepak (selected in Kaltelepak)</td>
</tr>
<tr>
<td>20</td>
<td>KATE/1/1/16 (TSH 858 x KEE 2)</td>
<td>Seleksi di Kaltelepak (selected in Kaltelepak)</td>
</tr>
<tr>
<td>21</td>
<td>KATE/1/11/11 (Sul 01 x NIC 7)</td>
<td>Seleksi di Kaltelepak (selected in Kaltelepak)</td>
</tr>
<tr>
<td>22</td>
<td>SA/1/1/2 (TSH 858 x Sul 01)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>23</td>
<td>SA/1/1/5 (TSH 858 x NIC 7)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>24</td>
<td>SA/1/1/4/4 (TSH 858 x SCA 13)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>25</td>
<td>SA/1/1/20 (KEE 2 x Sul 01)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>26</td>
<td>SA/1/1/24 (TSH 858 x Sul 01)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>27</td>
<td>SA/1/1/15 (TSH 858 x SCA 13)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>28</td>
<td>SA/1/1/15 (TSH 858 x SCA 13)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>29</td>
<td>SA/1/11/22 (TSH 858 x SCA 13)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>30</td>
<td>SA/1/1/4/11 (TSH 858 x SCA 13)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>31</td>
<td>SA/1/1/4/11 (TSH 858 x SCA 13)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>32</td>
<td>SA/1/1/7/3 (KEE 2 x NIC 7)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>33</td>
<td>SA/1/1/11/23 (Sul 01 x NIC 7)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>34</td>
<td>SA/1/6/1 (KEE 2 x Sul 01)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>35</td>
<td>SA/1/6/28 (KEE 2 x NIC 7)</td>
<td>Seleksi di Sumber Asin (selected in Sumber Asin)</td>
</tr>
<tr>
<td>36</td>
<td>Kembo/ID/6/21 (TSH 858 x KEE 2)</td>
<td>Seleksi di Kendenglembu (selected in Kendenglembu)</td>
</tr>
<tr>
<td>37</td>
<td>Kembo/ID/1/8 (TSH 858 x KEE 2)</td>
<td>Seleksi di Kendenglembu (selected in Kendenglembu)</td>
</tr>
<tr>
<td>38</td>
<td>KWN/1/4/9/1 (Sul 01 x KEE 2)</td>
<td>Seleksi di Kaliving (selected in Kaliving)</td>
</tr>
<tr>
<td>39</td>
<td>KWN/1/4/10 (KW 165 x KEE 2)</td>
<td>Seleksi di Kaliving (selected in Kaliving)</td>
</tr>
</tbody>
</table>

Rancangan Percobaan

Percobaan dirancang dalam susunan acak lengkap dengan tiga ulangan. Unit percobaan adalah contoh buah yang diambil dari tanaman percobaan di lapangan dengan kriteria telah berkembang penuh, sekitar umur empat bulan. Contoh buah kemudian dibawa ke Laboratorium Penyakit Tanaman Pusat Penelitian Kopi dan Kakao Indonesia untuk tahap inokulasi dengan *P. palmivora*. Guna mengetahui stabilitas ketahanan klon-klon materi percobaan terhadap inokulasi *P. palmivora* maka pengujian di laboratorium diulang sebanyak dua kali.

Pengujian ketahanan kakao terhadap *P. palmivora* dilakukan mengikuti prosedur yang diterapkan di Laboratorium Penyakit Tanaman Pusat Penelitian Kopi dan Kakao Indonesia. Sumber inokulum berasal dari buah busuk akibat infeksi *P. palmivora* yang diambil dari Kebun Tajirono Banyuwangi, tempat lokasi pengujian lapangan klon-klon materi percobaan. Contoh buah kakao yang akan diinokulasi dengan *P. palmivora* terlebih dahulu dicuci dengan air bersih dan disterilisasi menggunakan larutan kloroks 10% kemudian diletakkan pada kotak inkubasi di atas alas basa yang telah dibasahi dengan air steril untuk meningkatkan kelembaban udara di dalam kotak inkubasi (tingkat kelembaban ±90%). Inokulum diambil dari buah kakao yang terinfeksi *P. palmivora* kemudian bagian kulitnya (mesocarp) dipotong-potong menjadi bagian kecil (ukuran ± 0.5 cm x 0.5 cm). Setelah itu potongan-potongan kulit buah yang mengandung inokulum *P. palmivora* diletakkan di atas permukaan contoh buah lalu ditutup dengan kertas yang dibasahi air steril. Setelah proses inokulasi tersebut, kotak inkubasi ditutup dengan kaca tembus pandang untuk menjaga kelembaban udara dan suhu.

Pengamatan

Peubah pengamatan yang diukur adalah luas bercak akibat infeksi *P. palmivora* mulai hari kesatu hingga hari ketujuh setelah inokulasi. Pengamatan luas bercak dilakukan hingga hari ketujuh, sebab pada hari ketujuh luas bercak sudah menutupi hampir seluruh permukaan kulit buah klon yang rentan. Data luas bercak (mm²) dihitung berdasarkan konversi data diameter bercak (mm) per buah. Berdasarkan data luas bercak hari kesatu hingga hari ketujuh maka dapat dihitung kecepatan perkembangan luas bercak (mm²/hari). Guna mengetahui tingkat ketahanan *P. palmivora* maka dibuat tingkat perbandingan rerata luas bercak (mm²) dan kecepatan perluasan bercak (mm²/hari) antara klon-klon kakao materi percobaan terhadap kontrol klon tahan, Sea 6.

Data pengamatan terlebih dahulu ditransformasi dengan $\sqrt{Y+0.5}$ untuk memenuhi asumsi kenormalan data sebelum dilakukan analisis ragam. Selanjutnya dilakukan analisis *fastclus* untuk pengelompokan kelas ketahanan klon-klon materi percobaan dengan program *statistical analysis system (SAS)* berdasarkan komponen utama peubah luas bercak hari kesatu hingga hari ketujuh dan kecepatan perkembangan luas bercak.
HASIL DAN PEMBAHASAN

Klon-klon materi percobaan dikelompokkan ke dalam lima grup untuk menduga tingkat ketahanannya terhadap P. palmivora. Pengelompokan ke dalam lima grup ini berdasarkan dugaan bahwa ketahanan klon-klon materi percobaan terhadap inokulasi P. palmivora bervariasi antara tahan (kelompok I), agak tahan (kelompok II), agak rentan (kelompok III), rentan (kelompok IV), hingga sangat rentan (kelompok V) sebagaimana yang pernah dilakukan dalam pengelompokan ketahanan kakao terhadap huma penggerek buah kakao (Susilo et al., 2009). Pengelompokan ketahanan penyakit buah buah yang dilaporkan Phillips-Mora et al. cit. Phillips et al. (2011) bahkan menambahkan kategori sangat tahan (highly resistant). Hasil pengelompokan pada pengujian tahap I dan tahap II (Tabel 4 dan 5) diperoleh hasil yang relatif sama sebab beberapa klon materi percobaan tetap masuk dalam kelompok yang

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>Derajat bebas</th>
<th>Tahap pengujian</th>
<th>Jumlah kuadrat</th>
<th>Sum of square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klon (Clone)</td>
<td>32</td>
<td>1st day</td>
<td>4.62 *</td>
<td>78.61 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd day</td>
<td>191.16 *</td>
<td>601.53 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd day</td>
<td>312.73 *</td>
<td>1056.69 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th day</td>
<td></td>
<td>1428.26 *</td>
</tr>
<tr>
<td>Siis (Error)</td>
<td>66</td>
<td>1st day</td>
<td>16.58 *</td>
<td>40.28 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd day</td>
<td>194.85 *</td>
<td>397.41 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd day</td>
<td>641.86 *</td>
<td>1169.72 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th day</td>
<td>1550.70 *</td>
<td>1550.70 *</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>1st day</td>
<td>10.81</td>
<td>106.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd day</td>
<td>271.19</td>
<td>416.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd day</td>
<td>738.56</td>
<td>1205.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th day</td>
<td>1594.85</td>
<td>1594.85</td>
</tr>
</tbody>
</table>

Keterangan (Note): * hasil uji Fisher menunjukkan ada pengaruh nyata pada arah 1% (Fisher test indicate significant effect at 1% of level test)

PELITA PERKEBUNAN, Volume 30, Nomor 1, Edisi April 2014
Gambar 1. Perkembangan luas bercak hari ke-1 hingga hari ke-7 setelah inokulasi P. palmivora pada pengujian tahap I dan tahap II

Figure 1. Development of lesion size at the 1st day to 7th day after inoculation of P. palmivora on 1st and 2nd step of trial

PELITA PERKEBUNAN, Volume 30, Nomor 1, Edisi April 2014
sama meskipun ada perbedaan rentang nilai luas bercak antara pengujian tahap I dan tahap II. Perbedaan rentang nilai minimum dan maksimum data luas bercak hari ketujuh setelah inokulasi pada pengujian tahap II (62,3 kali) lebih besar dibandingkan hasil pengujian tahap I (13,2 kali). Hal ini menyebabkan adanya perbedaan hasil pengelompokan antara pengujian tahap I dan tahap II pada sebagian klon-klon materi percobaan yang menunjukkan adanya ketidakstabilan respons genotipe terhadap waktu pengujian (lingkungan). Fenomena ini juga ditunjukkan oleh Sca 6 sebagai kontrol tahan yang pada pengujian tahap I masuk dalam kelompok I, sedangkan pada pengujian tahap II masuk dalam kelompok III. Respons ketahanan klon-klon kakao terhadap inokulasi Phytophthora sp. dilaporkan ada yang stabil dan ada yang tidak stabil (Pinto et al., 2007). Disebutkan bahwa klon-klon yang responsnya stabil diduga memiliki ketahanan horizontal terhadap Phytophthora sp.

Pengelompokan tersebut sebagai cerminan potensi ketahanan klon-klon materi percobaan terhadap P. palmivora sebagai dasar pertimbangan dalam seleksi tahap lanjut. Berdasarkan pengelompokan tersebut (Tabel 4 dan 5) diketahui ada beberapa klon yang menunjukkan potensi tahan terhadap P. palmivora sebab termasuk dalam satu kelompok dengan Sca 6 bahwa pada pengujian tahap II beberapa klon menunjukkan rerata luas bercak yang lebih rendah dibandingkan Sca 6 (Tabel 3). Di antara klon-klon tersebut yang konsisten menunjukkan rerata luas bercak terendah adalah Jano/IV/4/13 (TSH 858 x ICS 13), Jano next to 1/7, dan Kate/I/10/18 (Sulawesi 01 x TSH 858) yang pada pengujian tahap I maupun pengujian tahap II masuk dalam kelompok I. Di antara klon-klon tersebut merupakan genotipe hasil persilangan yang melibatkan TSH 858 sebagai induknya walaupun hasil pengujian diketahui bahwa TSH 858 memiliki tingkat ketahanan yang rendah terhadap P. palmivora. Sebelumnya dilaporkan bahwa ketahanan TSH 858 terhadap P. palmivora termasuk kategori moderat (Napitupulu et al., 1991; Rubiyo et al., 2008) bahkan termasuk kategori tahan (Wirianata, 2004). Perbedaan hasil ini diduga akibat adanya perubahan patogensitas P. palmivora. Di samping ketiga klon tersebut, pada pengujian tahap II juga diketahui ada beberapa klon lainnya yang menunjukkan potensi tahan P. palmivora sebab masuk dalam satu kelompok dengan Sca 6 (kelompok III) dan bahkan ada yang rerata luas bercaknya lebih rendah dibandingkan Sca 6 (kelompok II) (Tabel 5). Sebagian klon-klon tersebut juga merupakan hasil persilangan yang melibatkan TSH 858 sebagai induknya. Hasil ini membuktikan bahwa proses rekombinasi genetik berpeluang membentuk genotipe baru yang memiliki sifat berbeda dengan sifat induknya.

Ketahanan kakao terhadap P. palmivora dilaporkan melibatkan mekanisme struktural dan kimiai (Wirianata, 2004). Secara struktural dilaporkan bahwa kedalaman alur kulit buah dan panjang pori mulut kulit buah berperan dalam ketahanan sebelum penetrasi sedangkan pascapenetrasi ketahanan kakao terhadap P. palmivora diatur oleh mekanisme kimiai yang melibatkan senyawa lignin dan tanin. Lignifikasi pada sel-sel epidermis dan sub epidermis diduga kuat berperan dalam ketahanan pascapenetrasi P. palmivora pada buah kakao. Klon-klon tahan yang dikendalikan secara kimiai akan menunjukkan kecepatan perluasan bercak yang rendah sebemampu menghambat perkembangan infeksi P. palmivora dalam jaringan kulit buah. Hasil penelitian ini menunjukkan bahwa seluruh klon kakao yang diuji

PELITA PERKEBUNAN, Volume 30, Nomor 1, Edisi April 2014
buahnya terinfeksi oleh P. palmivora, termasuk Sca 6 sehingga diduga bahwa ketahanannya tidak melibatkan mekanisme struktural yang mampu menghalangi penetrasi P. palmivora ke dalam buah. Adanya lignifikasi pada sel-sel epidermis dan subepidermis diduga juga berperan dalam ketahanan kakao terhadap penyakit VSD sebab Sca 6, selain tahan penyakit busuk buah juga tahan penyakit VSD.

<table>
<thead>
<tr>
<th>No.</th>
<th>Klon Clones</th>
<th>Rerata luas bercak, mm²</th>
<th>Rerata kecepatan perluasan bercak, mm²/hari</th>
<th>Mean of lesion size, mm²</th>
<th>Mean of lesion enlargement, mm²/day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st testing</td>
<td>2nd testing</td>
<td>1st testing</td>
<td>2nd testing</td>
</tr>
<tr>
<td>1</td>
<td>Sa6</td>
<td>3.83 (100%)</td>
<td>59.11 (100%)</td>
<td>9.72 (100%)</td>
<td>20.19 (100%)</td>
</tr>
<tr>
<td>2</td>
<td>JANO/1/4/15</td>
<td>21.09 (550%)</td>
<td>25.71 (45.50%)</td>
<td>45.33 (466.34%)</td>
<td>13.27 (45.48%)</td>
</tr>
<tr>
<td>3</td>
<td>JANO/1/7/14</td>
<td>42.91 (1120%)</td>
<td>27.43 (46.40%)</td>
<td>104.12 (1071.18%)</td>
<td>14.13 (48.41%)</td>
</tr>
<tr>
<td>4</td>
<td>JANO/1/8/4</td>
<td>27.79 (595%)</td>
<td>19.80 (33.49%)</td>
<td>39.99 (411.40%)</td>
<td>14.72 (30.43%)</td>
</tr>
<tr>
<td>5</td>
<td>JANO/1/8/14</td>
<td>32.66 (832.67%)</td>
<td>34.19 (57.85%)</td>
<td>64.56 (662.16%)</td>
<td>17.19 (38.90%)</td>
</tr>
<tr>
<td>6</td>
<td>JANO/1/8/20</td>
<td>34.58 (902.94%)</td>
<td>69.14 (116.97%)</td>
<td>69.38 (713.74%)</td>
<td>35.21 (120.65%)</td>
</tr>
<tr>
<td>7</td>
<td>JANO/1/10/3</td>
<td>30.15 (787.25%)</td>
<td>39.31 (66.50%)</td>
<td>59.61 (631.23%)</td>
<td>20.78 (71.21%)</td>
</tr>
<tr>
<td>8</td>
<td>JANO/1/10/5</td>
<td>38.36 (1001.71%)</td>
<td>46.77 (79.13%)</td>
<td>74.42 (796.47%)</td>
<td>25.09 (85.98%)</td>
</tr>
<tr>
<td>9</td>
<td>JANO/1/10/22</td>
<td>49.60 (1285.15%)</td>
<td>13.85 (23.43%)</td>
<td>117.17 (1205.42%)</td>
<td>7.37 (23.25%)</td>
</tr>
<tr>
<td>10</td>
<td>JANO/1/1/9</td>
<td>49.61 (1285.40%)</td>
<td>33.40 (56.50%)</td>
<td>125 (1285.99%)</td>
<td>16.59 (56.86%)</td>
</tr>
<tr>
<td>11</td>
<td>JANO/1/4/3</td>
<td>4.38 (114.32%)</td>
<td>0.90 (1.35%)</td>
<td>9.63 (299.07%)</td>
<td>0.69 (2.37%)</td>
</tr>
<tr>
<td>12</td>
<td>JANO/1/4/10</td>
<td>8.42 (219.76%)</td>
<td>30.44 (51.31%)</td>
<td>20.71 (210.96%)</td>
<td>17.48 (39.89%)</td>
</tr>
<tr>
<td>13</td>
<td>JANO/1/6/20</td>
<td>9.42 (245.95%)</td>
<td>46.70 (79.01%)</td>
<td>26.02 (267.67%)</td>
<td>24.37 (83.49%)</td>
</tr>
<tr>
<td>14</td>
<td>JANO/1/4/5</td>
<td>7.49 (195.78%)</td>
<td>71.29 (120.60%)</td>
<td>19.52 (200.77%)</td>
<td>36.33 (124.49%)</td>
</tr>
<tr>
<td>15</td>
<td>JANO/1/4/7</td>
<td>3.84 (100.20%)</td>
<td>4.40 (7.45%)</td>
<td>11.04 (115.09%)</td>
<td>2.13 (7.32%)</td>
</tr>
<tr>
<td>16</td>
<td>KATE/II/10/8</td>
<td>3.91 (100.2%)</td>
<td>2.46 (4.16%)</td>
<td>10.79 (111.01%)</td>
<td>1.99 (6.81%)</td>
</tr>
<tr>
<td>17</td>
<td>KATE/II/1/16</td>
<td>7.85 (204.96%)</td>
<td>15.33 (25.93%)</td>
<td>18.84 (193.83%)</td>
<td>8.78 (30.07%)</td>
</tr>
<tr>
<td>18</td>
<td>KATE/III/11/11</td>
<td>9.47 (247.23%)</td>
<td>26.59 (44.99%)</td>
<td>23.71 (243.93%)</td>
<td>15.32 (52.48%)</td>
</tr>
<tr>
<td>19</td>
<td>SA/1/6/4</td>
<td>10.13 (264.43%)</td>
<td>40.80 (74.10%)</td>
<td>31.58 (324.88%)</td>
<td>24.81 (85.85%)</td>
</tr>
<tr>
<td>20</td>
<td>SA/1/15</td>
<td>8.83 (230.51%)</td>
<td>70.14 (118.66%)</td>
<td>26.75 (225.19%)</td>
<td>32.66 (111.92%)</td>
</tr>
<tr>
<td>21</td>
<td>SA/1/29</td>
<td>10.85 (283.41%)</td>
<td>68.36 (115.65%)</td>
<td>36.05 (376.16%)</td>
<td>35.24 (120.74%)</td>
</tr>
<tr>
<td>22</td>
<td>SA/1/2/20</td>
<td>9.67 (252.42%)</td>
<td>65.33 (110.52%)</td>
<td>29.39 (302.40%)</td>
<td>32.31 (110.72%)</td>
</tr>
<tr>
<td>23</td>
<td>SA/1/2/24</td>
<td>9.75 (254.54%)</td>
<td>70.53 (119.33%)</td>
<td>28.24 (290.55%)</td>
<td>37.49 (128.45%)</td>
</tr>
<tr>
<td>24</td>
<td>SA/1/4/13</td>
<td>8.44 (220.26%)</td>
<td>55.80 (94.39%)</td>
<td>23.28 (239.58%)</td>
<td>29.44 (100.85%)</td>
</tr>
<tr>
<td>25</td>
<td>SA/1/4/11</td>
<td>8.68 (226.60%)</td>
<td>39.95 (67.58%)</td>
<td>23.21 (238.82%)</td>
<td>20.84 (71.41%)</td>
</tr>
<tr>
<td>26</td>
<td>SA/1/3/7</td>
<td>8.86 (231.30%)</td>
<td>78.97 (133.60%)</td>
<td>27.73 (285.31%)</td>
<td>37.96 (130.09%)</td>
</tr>
<tr>
<td>27</td>
<td>SA/1/6/9</td>
<td>9.45 (246.74%)</td>
<td>26.42 (44.70%)</td>
<td>30.36 (312.40%)</td>
<td>17.29 (59.25%)</td>
</tr>
<tr>
<td>28</td>
<td>Kembu/HKW/8</td>
<td>50.14 (1309.19%)</td>
<td>76.86 (130.03%)</td>
<td>113.66 (1169.36%)</td>
<td>40.73 (139.56%)</td>
</tr>
<tr>
<td>29</td>
<td>KWN/II/14/10</td>
<td>9.76 (255.06%)</td>
<td>26.81 (275.84%)</td>
<td>22.13 (227.67%)</td>
<td>21.83 (75.29%)</td>
</tr>
<tr>
<td>30</td>
<td>SA/1/5/5</td>
<td>8.28 (216.35%)</td>
<td>95.02 (1332.10%)</td>
<td>95.43 (981.85%)</td>
<td>41.57 (142.44%)</td>
</tr>
<tr>
<td>31</td>
<td>SA/1/1/9</td>
<td>92.22 (156.02%)</td>
<td>37.56 (128.68%)</td>
<td>38.46 (131.78%)</td>
<td>22.22 (76.14%)</td>
</tr>
<tr>
<td>32</td>
<td>SA/1/2/2</td>
<td>45.10 (76.50%)</td>
<td>37.19 (62.92%)</td>
<td>22.22 (76.14%)</td>
<td>21.12 (75.79%)</td>
</tr>
<tr>
<td>33</td>
<td>SA/1/4/4</td>
<td>45.10 (76.50%)</td>
<td>37.19 (62.92%)</td>
<td>22.22 (76.14%)</td>
<td>21.12 (75.79%)</td>
</tr>
<tr>
<td>34</td>
<td>SA/1/1/4</td>
<td>86.22 (145.87%)</td>
<td>45.35 (76.71%)</td>
<td>22.12 (76.64%)</td>
<td>20.03 (68.64%)</td>
</tr>
</tbody>
</table>

PELITA PERKEBUNAN, Volume 30, Nomor 1, Edisi April 2014
Tabel 4. Hasil pengelompokan klon klon kakao makan per coecobacter berdasarkan lasi per coecobacter pada hari ke-7 setelah inokulasi P. palmivora dan kecepatan perluasan lasi per coecobacter pada pengujian tahap I

<table>
<thead>
<tr>
<th>Kelompok Groups</th>
<th>Rerata lasi beracun hari ke-7, mm²</th>
<th>Kecepatan perluasan lasi per hari, mm²/hari</th>
<th>Genotipe Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>54,2 (23,2–30,5)</td>
<td>5,7 (3,8–8,4)</td>
<td>Jano/TV/4/13, Jano/TV/4/20, Jano/TV/14/3, Jano/nestol/7, Kate/I/10/18, Kate/I/1/16, Sca. 6.</td>
</tr>
<tr>
<td>II</td>
<td>57,6 (49,7–68,0)</td>
<td>9,5 (8,3–10,9)</td>
<td>Jano/TV/6/20, Kate/III/11/11, SA/I/2/5, SA/I/6/4, SA/II/1/3, SA/II/2/9, SA/III/2/20, SA/II/2/24, SA/II/4/13, SA/II/4/11, SA/III/7/3, SA/IV/6/9, Kom/II/14/10.</td>
</tr>
<tr>
<td>IV</td>
<td>203,9 (181,0–230,5)</td>
<td>33,9 (30,2–38,4)</td>
<td>Jano/I/7/14, Jano/III/10/22, Jano/IV/1/9, SA/IV/7/28, Kembri/HKIV/8.</td>
</tr>
</tbody>
</table>

Keterangan (Note): *angka dalam kurung adalah rentang nilai (*the number in the bracket is the range value)*

Tabel 5. Hasil pengelompokan klon klon kakao makan per coecobacter berdasarkan lasi beracun hari ketujuh setelah inokulasi P. palmivora dan laju perluasan lasi per coecobacter pada pengujian tahap II

<table>
<thead>
<tr>
<th>Kelompok Groups</th>
<th>Rerata lasi beracun hari ke-7, mm²</th>
<th>Kecepatan perluasan lasi per hari, mm²/hari</th>
<th>Genotipe Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>9,6 (4,1–12,8)</td>
<td>1,6 (0,69–2,2)</td>
<td>Jano/TV/4/13, Jano/IV/7/9, Kate/I/10/18.</td>
</tr>
<tr>
<td>V</td>
<td>242,7 (229,0–255,5)</td>
<td>39,3 (37,56–41,98)</td>
<td>SA/I/14/20, SA/III/7/3, Kembri/HKIV/8.</td>
</tr>
</tbody>
</table>

Keterangan (Note): *angka dalam kurung adalah rentang nilai (*the number in the bracket is the range value)*

KESIMPULAN

1. Ada perbedaan nyata respons ketahanan P. palmivora antarklon makan per coecobacter berdasarkan lasi beracun mulai hari ketujuh hingga hari keempat belas dan kecepatan perluasan lasi yang memublikan adanya potensi keragaman sifat ketahanan busuk buah pada klon klon makan per coecobacter.

2. Keragaman ketahanan P. palmivora klon-klon makan per coecobacter tersebut dapat dikelompokkan ke dalam lima klas ketahanan. Berdasarkan hasil pengelompokan diketahui terdapat tiga klon, yaitu Jano/TV/4/13 (TSH 858 x ICS 15), Jano next to 1/7, dan Kate/I/10/18 (Sulawesi 01 x TSH 858) yang stabil termasuk dalam kelompok I (tahan), baik pada pengujian tahap I dan

PELITA PERKEBUNAN, Volume 30, Nomor 1, Edisi April 2014
tahap II sehingga diduga memiliki tingkat ketahanan yang sama dengan Sca 6 sebab juga menunjukkan rerata luas bercak yang juga relatif sama dengan Sca 6 pada pengujian tahap I.

UCAPAN TERIMAKASIH

Penulis menyampaikan ucapan terima kasih kepada Direktur Pusat Penelitian Kopi dan Kakao Indonesia atas ijin publikasi hasil penelitian ini, manajer Kebun Jatirono, PTPN XII atas fasilitas yang diberikan dalam pelaksanaan percobaan di lapangan, Supandi, SP. dan Sukarmim atas bantuan teknis selama pelaksanaan percobaan di Laboratorium Perlindungan Tanaman Pusat Penelitian Kopi dan Kakao Indonesia maupun di lapangan.

DAFTAR PUSTAKA
